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Dissociating Pain from Its
Anticipation in the Human Brain

Alexander Ploghaus,1,2* Irene Tracey,1* Joseph S. Gati,3

Stuart Clare,1 Ravi S. Menon,3 Paul M. Matthews,1

J. Nicholas P. Rawlins2

The experience of pain is subjectively different from the fear and anxiety caused
by threats of pain. Functional magnetic resonance imaging in healthy humans
was applied to dissociate neural activation patterns associated with acute pain
and its anticipation. Expectation of pain activated siteswithin themedial frontal
lobe, insular cortex, and cerebellum distinct from, but close to, locations me-
diating pain experience itself. Anticipation of pain can in its own right cause
mood changes and behavioral adaptations that exacerbate the suffering ex-
perienced by chronic pain patients. Selective manipulations of activity at these
sites may offer therapeutic possibilities for treating chronic pain.

Intense, noxious stimulation leads to physio-
logical, emotional, and behavioral changes of
obvious adaptive significance (1). One is the
experience of pain, which minimizes imme-
diate harm by motivating escape (2). A sec-
ond is the activation of mechanisms to pre-
vent future harm by learning to recognize
signals of impending pain (3), allowing fu-
ture painful events to be expected and thus
avoided.

Functional neuroimaging has previously
been used to identify cerebral activation pat-
terns associated with the experience of pain
(4, 5). Brain areas activated during peripheral
painful stimulation included anterior cingu-
late, insular, prefrontal and somatosensory
cortices, and the thalamus (6 ). Attempts to
discriminate between brain responses associ-
ated with the expectation of pain and those
associated with the direct experience of pain
are only now beginning (7 ). This distinction
is important because not only do these two
processes have the separate adaptive conse-
quences outlined above, but they also have
potentially separate, maladaptive consequences.
For example, expectation of pain by itself may
be an important factor in the development of

chronic pain syndromes (8). A dissection of the
functional neuroanatomies of the expectation
and the experience of pain could therefore aid
development of therapeutic strategies for the
treatment of chronic and acute pain.

Twelve healthy volunteers underwent func-
tional magnetic resonance imaging (fMRI) (9)

while being presented with a pseudo-random
sequence of two intensities of thermal stimula-
tion (painful hot or nonpainful warm). Colored
lights signaled in advance the two kinds of
thermal stimulation. Subjects learned during the
imaging session which color signaled pain and
which signaled warmth (10). We identified
brain regions involved in the experience of pain
by comparing brain activation during pain with
activation during warm stimulation. This com-
parison, denoted “pain,” controls for somato-
sensory input unrelated to pain. In addition, we
identified brain regions involved in the antici-
pation of pain by comparing brain activation
during the colored light preceding pain to acti-
vation during the colored light preceding warm
stimulation. This comparison, denoted “antici-
pation,” controls for anticipatory processes un-
related to pain (11).

Interviews after the experiment confirmed
that all subjects were aware of the relation
between the light color and the intensity of
the thermal stimulation. Subjects rated pain-
ful heat significantly higher than nonpainful
warmth on two 11-point visual analog scales
measuring intensity [mean " SD, 7.3 " 1.3
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Fig. 1. Medial frontal
lobe. (A) Group-com-
bined activation map
showing volumes selec-
tively activated during
pain (red) and anticipa-
tion of pain (yellow). (B)
Individual subject’s acti-
vation centers during
pain (red triangles) and
anticipation of pain
(black circles). Centers
associated with the an-
ticipation of pain (black
circles; mean Talairach
coordinates x # 8 mm,
y # 38 mm, z # 27
mm) were significantly
more anterior than
those associated with
pain [red triangles;
mean coordinates x #
3 mm, y # 4 mm, z #
33 mm (24)] (P $
0.05). (C) Time course
of fMRI signal intensity
change over the period
of the scan averaged
across subjects. Epochs
related to anticipation
of pain are shaded in
gray (mean " SEM). (D) Time course of fMRI signal intensity change over the period of the scan
averaged across subjects (mean " SEM). Epochs of pain are shaded in gray.
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(“moderate-strong pain”) versus 2.3 " 0.9
(“warm, no pain”), P $ 0.01] and unpleas-
antness [mean " SD, 4.9 " 1.7 (“distress-
ing”) versus 1.0 " 0.2 (“comfortable”), P $
0.01] of somatosensory stimulation.

We observed clear activation in brain re-

gions previously reported in neuroimaging
studies of pain (6, 12). Crucially, within this
network of activation, we identified three
brain regions (medial frontal lobe, insular
cortex, and cerebellum) where responses to
pain could be dissociated from those to the

anticipation of pain on the basis of differenc-
es in neuroanatomical localization and the
time course of the fMRI signal change.

The medial frontal lobe was activated in 7
subjects during anticipation of pain and in 10
subjects during pain itself. Both the group
analysis (Fig. 1A) and the individual subject
analyses (Fig. 1B) showed that pain activated
caudal anterior cingulate cortex, whereas the
anticipation of pain activated a more anterior
region extending from perigenual cingulate to
the frontal pole (“anterior medial frontal cor-
tex”). Time courses of the fMRI signal also
differed for pain and for its anticipation. The
signal associated with the colored light pre-
ceding pain (Fig. 1C, shaded area) increased
over successive trials (linear trend, P $ 0.05).
In contrast, painful stimuli (Fig. 1D, shaded
area) produced a clear fMRI signal on the
first trial that remained constant throughout
subsequent testing (no significant trends).

Insular cortex was activated in eight sub-
jects during anticipation of pain and in seven
subjects during pain itself. Both the group anal-
ysis (Fig. 2A) and separate analysis of data
from individual subjects (Fig. 2B) showed that
activation related to pain was located in the
mid-insula, whereas the activation related to the
anticipation of pain was found in the anterior
insula. The time courses of fMRI signal were
again different for pain and for its anticipation.
The signal associated with the colored light
preceding pain (Fig. 2C, shaded area) increased
over trials (linear trend, P $ 0.05). In contrast,
signal amplitude associated with painful stimuli
(Fig. 2D, shaded area) remained constant
throughout the scanning session (no significant
trends).

The cerebellum was activated in 10 sub-
jects during the anticipation of pain and in 9
subjects during the period of the painful stim-
ulation. The group-combined volume of acti-
vation (Fig. 3A) associated with pain was
localized to the anterior cerebellum and was
bilateral; activation associated with the antic-
ipation of pain was localized in posterior
cerebellum and was predominantly ipsilateral
for data summed across the entire group. The
time courses of fMRI signal were again dif-
ferent for pain and its anticipation. The signal
associated with the colored light preceding
pain (Fig. 3C, shaded area) increased over
trials (linear trend, P $ 0.05), whereas signal
amplitude associated with painful stimuli
(Fig. 3D, shaded area) was consistent
throughout the scanning session (no signifi-
cant trends).

Dissociations in these brain regions were
specific to pain and its anticipation. They
were also seen when comparing brain activa-
tion during pain to activation during the col-
ored light preceding pain (13), but not when
contrasting warm stimulation with baseline
and anticipation of warm stimulation with
baseline (14 ).

Fig. 2. Insular cortex. (A)
Group-combined activa-
tion map showing vol-
umes selectively activat-
ed during pain (red) and
anticipation of pain (yel-
low). (B) Individual sub-
ject’s activation centers
during pain (red trian-
gles) and anticipation
of pain (black circles).
Centers associated with
the anticipation of pain
(black circles; mean Ta-
lairach coordinates x #
40 mm, y # 26 mm, z
# 10 mm) were sig-
nificantly more anterior
than those associated
with pain (red triangles;
mean Talairach coordi-
nates x # 38 mm, y #
%1 mm, z # 11 mm)
(P $ 0.05). (C) Time
course of fMRI signal in-
tensity change over the
period of the scan aver-
aged across subjects. Ep-
ochs related to anticipa-
tion of pain are shaded
in gray (mean" SEM). (D) Time course of fMRI signal intensity change over the period of the scan averaged
across subjects (mean" SEM). Epochs of pain are shaded in gray.

Fig. 3. Cerebellum. (A)
Group-combined activa-
tion map showing vol-
umes selectively activat-
ed during pain (red) and
anticipation of pain (yel-
low). (B) Individual sub-
ject’s activation centers
during pain (red trian-
gles) and anticipation of
pain (black circles). Acti-
vation centers appear to
form bands, an anterior
one associated with pain
(red triangles; mean Ta-
lairach coordinates x #
3 mm, y # %53 mm,
z# %21mm) and a sig-
nificantly (P $ 0.05)
more posterior one as-
sociated with anticipa-
tion of pain (black cir-
cles; mean Talairach co-
ordinates x # %7 mm,
y# %62 mm, z# %21
mm). An additional
small band of pain-relat-
ed activations is appar-
ent at the cerebellar
pole. (C) Time course of
fMRI signal intensity change over the period of the scan averaged across subjects. Epochs related to
anticipation of pain are shaded in gray (mean" SEM). (D) Time course of fMRI signal intensity change over
the period of the scan averaged across subjects (mean" SEM). Epochs of pain are shaded in gray.
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Our study demonstrates that the neural sub-
strates of pain and its anticipation can be dis-
criminated both by the involvement of distinct
brain regions and the differing response char-
acteristics of these areas (15). This conclusion
receives substantial support from our finding
that anterior medial frontal cortex, anterior in-
sula, and posterior cerebellum did not activate
throughout the entire presentation of the col-
ored light associated with pain, but only during
the time before onset of the painful stimulus.
The experience of pain activated caudal anterior
cingulate cortex, mid-insula, and anterior cere-
bellum (“pain regions”), whereas anticipation
of pain activated anterior medial frontal cortex
(16), anterior insula, and posterior cerebellum
(“anticipation regions”). Activation in the pain
regions was consistent from trial 1 onward
(Figs. 1 to 3D), whereas activation in the antic-
ipation regions increased over trials. Such an
increase would be expected as subjects learn
that the colored light predicts pain. This indi-
cates that fMRI can monitor processes possibly
associated with learning cues to painful events.

Each of the anticipation regions has in
close proximity a region mediating pain ex-
perience. This arrangement suggests a way in
which learning to predict pain may occur by
some form of local interaction (17, 18). Per-
haps this arrangement allows signals of im-
pending pain to activate different aspects of
autonomic [insula (19)], affective [medial
frontal (5, 20)], and motor [cerebellum (21)]
function than those that would be activated
by pain itself.

Previous functional neuroimaging studies
of pain have reported activation of anterior
medial frontal cortex and anterior insula dur-
ing painful stimulation (6 ). Our results show
that these activations are not responses to
pain itself; rather, they are responses to the
anticipation of pain. Previous studies proba-
bly contained incidental cues to impending
pain and integrated brain activation over
longer intervals [using positron emission to-
mography (PET) rather than fMRI], thereby
confounding to varying degrees pain with
anticipation (4 ). The present study was de-
signed to separate anticipation and pain tem-
porally by adding explicit cues before ther-
mal stimulation that were designed to over-
shadow any incidental cues (22). This design
could be used to evaluate the efficacy of
pharmacological or psychological interven-
tions directed specifically at minimizing ei-
ther responses to pain or to its anticipation.
Such an approach might also offer new in-
sights into mechanisms of abnormal sensitiv-
ity to pain or of chronic pain syndromes.
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